Top Ten Things | Hate About STL

Miro JuriSi¢ <meeroh@meeroh.org>

June 19, 2003

Unstable Iterators

e STL iterators are invalidated more often than you'd want

e STL iterator invalidation rules are complex

vector <int> v;

vector <int>::iterator i = v.begin ();
v.insert (i++, 1); // bad

i= v.begin ();

v.insert (i, 1);

v.insert (i, 2); // bad

i = v.begin O;
while (i !'= v.end ()) {
v.erase (i); // bad

e Familiarize yourself with iterator invalidation rules
e Use a debugging version of STL (CW 8+)

Unchecked lterators

e Using an invalid iterator has undefined behavior

e No bounds checking

vector <int> v;
vector <int>::iterator i = v.end ();
*i = 0; // bad

e Use a debugging version of STL (CW 8+)

wstring

wstring sounds like it's useful if you want Unicode support
It's not

Uses per-character copies and lexicographic comparisons
Has no knowledge of Unicode decompositions

wchar_t size platform-specific

Use CFString until someone writes a good C++ Unicode string class

Thread safety

C++ standard has no mention of threads

Thread safety is up you and and your vendor
Thread safety of containers is not an easy problem
Locking granularity depends on usage scenarios

Every possible solution is unacceptable in many valid scenarios

Familiarize yourself with STL thread safety gurantees
Familiarize yourself with your vendors’ guarantees

Familiarize yourself with third-party thread libraries (boost: : threads)

vector <bool>

vector <bool> isn't an STL container

Does not obey STL container semantics (&v[0] doesn't compile)

Don't use it

Use bitset, deque <bool>, boost::dynamic_bitset

remove ()

e remove() doesn't

e It only moves elements to the beginning

vector <int> v;

v.push_back (1);

v.push_back (2);

v.push_back (3); // v.size () ==

#ifdef WRONG

remove (v.begin (), v.end (), 2); // v.size () == 3!
#else
erase (
remove (v.begin (), v.end (), 3),
v.end ()
);
#endif

e Remember that remove () doesn’t, and call erase()

auto_ptr

e You can't store an auto_ptr in a container
e Doesn’t work on new []

e auto_ptr is no magic dust
void f (Class* sl1, Class* s2);

// Not exception safe, could leak!
f (new Class (), new Class ());

void f (auto_ptr <Class> sl, auto_ptr <Class> s2);

// Not exception safe, could leak!
f (auto_ptr <Class> (new Class ()), auto_ptr <Class> (new Class ()));

e Familiarize yourself with other smart pointers
(boost: : [shared|scoped] _[ptr|array])

10

e What is ptr_fun for anyway?

e But my code compiles without it!

bool IsEven (int x);

vector <int> v;

find_if (v.begin
find_if (v.begin

find_if (v.begin
find_if (v.begin

O,
O,

O,
O,

.end (),
.end (),

.end (),
.end (),

ptr_fun

&IsEven) ;
ptr_fun (&IsEven));

notl (&IsEven));
notl (ptr_fun (&IsEven)));

//
//

//
//

11

e It is easier to consistently use ptr_fun
e Using ptr_fun will not break your code

e Using ptr_fun may make your code faster

12

reverse_iterator

e Some insertions and deletions require forward iterators
e Conversion of reverse iterators to forward iterators can be confusing

vector <int>::iterator fi;
vector <int>::reverse_iterator ri = fi;
v.insert (fi, x); // Is the same as

v.insert (ri.base (), x);

v.erase (fi); // Is the same as
v.erase ((++ri).base ())); // !

e Don't use reverse iterators if you don't have to
e When you have to convert to a forward iterator, be careful to adjust as necessary

13

Error Messages

STL error messages are long
STL messages are complex

STL messages are hard to decypher

Beg your compiler vendors to improve the compiler
Use STLFilt

Practice

14

