
Hierarchical Distributed Repositories in CVS

Miroslav Jurǐsić

January 31, 2001



Brief history of CVS

• Revision Control System (RCS, 1982)

• CVS shell scripts (1990)

• CVS in C

• Client-server CVS

1



Motivation

• Repository is the unit of management

• Large projects need distributed management

• Scenario 1: private modifications to a public project

• Scenario 2: public modifications to a public project

• Scenario 3: public and private repositories for a project

• Scenario 4: pristine repositories for a project

• Scenario 5: off-line operation

2



Existing Repository Model

• Client: working files

– Per-directory administrative information: repository location
– Per-file administrative information: checkout revision, date

• Server: repository

– Revision history of every file
– Revisions organized in a tree
– Symbolic tags

3



Existing Repository Model

• Client-server protocol

– Authentication: connection port depends on authentication method
– Client requests regenerate working files on the server
– Server executes commands locally and relays output back to the client

• User interface

– Translates user requests to client requests
– Minimal translation for command line clients

4



Desired Repository Model

• Full generality is too complicated

• Typical way people use CVS

– Most operations are performed on a single branch
– Cross-branch operations are rare

• Simplify the problem by requiring every branch to be stored on one server

• Revision hierarchy parallels server hierarchy – hierarchically distributed
repository

5



Modifications To the Repository Model

• Client: working files

– Per-file repository location

• Server: repository

– Parent branch location
– Child branch locations at branchpoint

• User interface

– New syntax for tag for remote branch creation

6



Modifications To the Repository Model

• Client-server protocol

– Most requests and responses unchanged, because they never operate
on more than one version of a single file

– Authentication: consolidated authentication negotiation on one port
– Not-Carried returned when a needed revision is not available to the
server

– Remote-Revision used to provide a needed revision to the server
– tag used to create new remote branch points: new syntax, new
response: Create-remote-branch

– add used to create new remote branches: new syntax

7



Further Work

• Make update work across servers

• Coalesce multiple requests to a single server into one session

• Better error handling: some errors are fatal when they don’t need to be

• Client-side caching of repository hierarchy

• Submit the changes to CVS maintainers

8



Conclusion

• Gnu/Cyclic CVS implementation is painful

• Ideas and intents of distributed repositories are feasible and useful

• Open source development decentralized, needs decentralized project
management

• Consider distributed repositories for inclusion in the emerging new version
control systems

9


