Data sharing on Mac OS

Miroslav JuriSi¢, <meeroh@mit .edu>

Abstract

This paper explores different possibilities for data sharing on Mac OS. The applications for data sharing include
communication between different processes as well as communication between processes and standalone
code. The mechanisms explored cover Apple Events, Code Fragment Manager, Process-to-Process Toolbox,
Gestalt, Multiprocessing Queues, Mach IPC, and others. The environments considered are Mac OS 8 and 9,
Carbon on Mac OS 8 and 9, Carbon on Mac OS X, Mac OS X, and the Classic environment on Mac OS X.
The paper compares different methods of data sharing based on their runtime requirements, operating system
requirements, ease of programming, user experience, and appropriateness for different applications.

Introduction

Frequently, there’s a need to share data between
different pieces of code which comprise one
package. For example, if you are writing an ap-
plication and a Control Strip module, you might
want to display application status information in
the Control Strip module. This means that you
need to share some data between the control strip
and the application.

Matters can get much more complicated as
your product grows. You might have more than
one application, a Control Strip module, a con-
textual menu modaule, a faceless background ap-
plication, and they might all need to share some
data.

This article explores different ways to share
data among applications and standalone code
under Mac OS. For each of the techniques, the
description includes a summary of runtime en-
vironments in which the technique can be used.

Data Sharing on Mac OS, page 1

The runtime environments considered are;

e Mac OS 8 and 9 interrupt time

Techniques in this category can be used
from interrupt time under Mac OS 8 and 9.
Typically, there is some setup code which
has to run as system task time before the
interrupt time code can run.

Mac OS 8 and 9 standalone code

Techniques in this category can be used
from standalone code (code resources, plu-
gins, etc.) under Mac OS 8 and 9. These
techniques do not require an event loop,
but they are in general not interrupt-safe.

Mac OS 8 and 9 68K

Techniques in this category can be used
on 680x0-based computer running Mac OS.
(Note that 680x0 code running on Pow-
erPC can take advantage of additional tech-
niques available on PowerPC by using the
Mixed Mode Manager.)



e Mac OS 8 and 9 InterfaceLib

Techniques in this category can be used
from InterfaceLib code under Mac OS 8 and
9. Some of them may have additional sys-
tem requirements.

Mac OS 8 and 9 CarbonLib

Techniques in this category can be used
from CarbonLib code under Mac OS 8 and
9. Some of them may have additional sys-
tem requirements.

Mac OS X CFM

Techniques in this category are directly
available to Carbon CFM code running un-
der Mac OS X. Although it’s possible to
call between CFM and Mach-O code under
Mac OS X, it can be tedious, and thus the
distinction is made between facilities avail-
able to CFM code and to Mach-O code.

Mac OS X Mach-O

Techniques in this category are directly
available to Mach-O code running under
Mac OS X. They are also available to CFM
code via one of the methods described in
the ”Calling Mach-O from CFM” section.

Mac OS X Classic environment

Techniques in this category, when used in
code running inside the Mac OS X Classic
environment, enable communication with
applications running natively on Mac OS
X.

General Considerations

Data Sharing Architecture

If you need to use data sharing, you have a prod-
uct which consists of several components, and
you need to share some data among them. Some
of the components will generate data (data pro-
ducers), some will just use it (data consumers), and
some will do both.

In most cases, you will have one component
which is charged with storing the data. This
component is your data provider; data producers
hand data off to the data provider, while data
consumers retrieve data from the data provider.

When possible, it's common to make one
of your existing components the data provider.
This avoids adding more components to the sys-
tem, but it is only possible if the type of compo-
nent you need for a data provide (a faceless back-
ground application, a library, etc.) already exists
in a suitable place in your product.

Some literature refers to data providers as
servers, and other components as clients; this
paper avoids that terminology because it’s over-
loaded.

Designing a Data Sharing API

The first thing you should do when you need to
deal with data sharing is design an API which
provides the necessary accessors functions. This
allows you to change the underlying data shar-
ing implementation much more easily. This
helps even if all you need to share are a few num-

Data Sharing on Mac OS, page 2



bers, and is especially important if your data be-
comes complex.

Your API design will normally have very
little influence on which data sharing mecha-
nisms you can use. The mechanisms available
to you are mostly determined by the complex-
ity of your data, the complexity of communica-
tions you need, and your runtime and system re-
quirements. Therefore, concentrate on designing
a simple, robust API, and you will be able to find
an appropriate implementation.

Calling Mach-O from CFM

If your code is running on Mac OS X, you may
need to access system services which are not pro-
vided in the form of CFM libraries. In order to
do that, you will need to call Mach-O code from
your CFM code - unless you want to rebuild
your code as Mach-O code.

The basic principle of calling Mach-O code
from CFM is to use the Bundle Services API in
Core Foundation. You can get a reference to a
Mach-O framework using the Bundle Services,
load the framework, and then retrieve addresses
of various symbols in the framework.

Apple provides an example of this in the Car-
bon SDK, as well as in the sample code archive.

If you need to do this for many symbols, you
may want to look into using the CocoaLib Code-
Warrior plugin, which automates the process.

Data Sharing on Mac OS, page 3

Synchronization and Data Consis-
tency

Whenever you are sharing data between differ-
ent pieces of code which can run concurrently,
you have to worry about synchronizing access to
shared data.

The standard example of this is the concept
of interrupt-safe code on Mac OS 9. For exam-
ple, code running at interrupt time cannot call
the Memory Manager, because at the time the in-
terrupt is triggered, the internal Memory Man-
ager data structures might not be consistent — for
example, if the interrupt is triggered when the
Memory Manager is in the middle of relocating a
block.

If you are sharing data in your code, you
must worry about the same problem. If you do
not understand the issues surrounding data con-
sistency, you will find yourself tracking down
bugs which are extremely hard to reproduce, be-
cause they depend on the exact timing of your
code.

The first step in understanding the issues of
data consistency is understanding the difference
between cooperatively scheduled code and pre-
emptively scheduled code.

Cooperatively scheduled code runs until it
explicitly relinquishes control. For example, any
Mac OS 9 application is cooperatively scheduled
with respect to any other Mac OS 9 application,
because the system will only switch from one
to the other when WaitNextEvent is called. (It
might seem that Carbon Events complicate this,
but on Mac OS 9 Carbon Events use WaitNex-



tEvent themselves.)

Code which is scheduled preemptively can
gain control of the CPU without that control be-
ing explicitly relinquished by the code currently
running. For example, an interrupt task under
Mac OS 9 is preemptively scheduled relative to
all applications running under Mac OS 9.

When all you are dealing with is coopera-
tively scheduled code, it’'s easy to make sure
that your data is always consistent: never re-
linquish control when the data is not consistent.
For example, imagine you are sharing two in-
tegers, who sum always must be zero. When
you change one of them, you have to change the
other, and therefore there is a small window of
time when their sum is not zero — when one has
been updated but not the other. If you never
relinquish control during that window of time,
your data will always be consistent.

When your code is preemptively scheduled,
you must use other techniques. There are many
different ways in which code can be preemp-
tive on Mac OS 9 and X, and therefore dealing
with preemptively scheduled code is depended
on what environment the code is running in.
However, some basic rules apply:

e OnMac OS9

— Applications and other code running
at system task time are cooperatively
scheduled with respect to each other.
Control is relinquished by calling
WaitNextEvent () or SystemTask().

— All code running at interrupt time is
preemptively scheduled with respect
to system task time code, but only in-

terrupt time code can interrupt sys-
tem task time code — not the other way
around.

— Deferred time tasks are scheduled
cooperatively with respect to each
other. Likewise, secondary interrupt
time tasks are cooperatively sched-
uled among themselves.

— Other code running at interrupt time
is preemptively scheduled with re-
spect to interrupt time code.

— Multiprocessing threads are preemp-
tively scheduled with respect to all
other code.

e On Mac OS X

— Applications are preemptively sched-
uled with respect to each other.

— POSIX, Mach, and Multiprocessing
threads are likewise scheduled pre-
emptively with respect to each other.

— Some asynchronous Carbon callbacks
(e.g., Open Transport or Time Man-
ager callbacks) are scheduled preemp-
tively with respect to the main thread,
however, they can also be preempted
by the main task, unlike on Mac OS
9. It is extremely important that you
are aware of this change in behavior,
because code is commonly written to
assume the opposite.

When you are dealing with preemptive
scheduling on Mac OS X, your life is usually rel-
atively simple. You can use an appropriate syn-
chronization API (Multiprocessing queues if you
use the Multiprocessing APIs, POSIX mutexes if
you use POSIX threads, etc.).

Data Sharing on Mac OS, page 4



On Mac 0S 9, you need to use one of the Mac
OS 9 synchronization APIs; they exist as part
of Driver Services, Open Transport, and Multi-
Processing API. The Driver Services and Open
Transport APIs work on a lower level than the
other APIs. However, the Driver Services and
Open Transport APIs are your only choice on
Mac OS 9 unless you need to synchronize data
among Multiprocessing threads.

Details of using those APIs are beyond the
scope of this article, but the bibliography lists ref-
erences to appropriate APl documentation.

Sharing Mechanisms

Once you've decided what you want from of
your API, you will need to implement the API
to use a data sharing mechanism, or even several
mechanisms, if your needs are very complex.

You should get a general feeling of which
mechanisms are appropriate simply by reading
the overview of every mechanism. For the ones
that apply to you, read the detailed description
and the sample code, to familiarize yourself with
the mechanism, and then write your own code.
References to Apple documentation are included
for every mechanism, as the full documentation
of the respective Mac OS APIs is beyond the
scope of this paper, and you should read at least
the introductory sections of the relevant docu-
ments, to gain a general understanding of the
APIs you will be calling.

Data Sharing on Mac OS, page 5

Gestalt

Overview

Gestalt is a system-wide registry which maps se-
lectors (32-bit integers) to values (32-bit integers).
A selector can have either a specific value (which
can be changed), or a callback function which re-
turns the current value.

On Mac OS 8 and 9, Gestalt can be used for
data sharing among 68K and PowerPC applica-
tions and standalone code. On Mac OS X, Gestalt
can be used for data sharing within one applica-
tion, which is occasionally useful, but it cannot
be used to share data between applications.

Gestalt primarily works for one-way commu-
nication. Trying to implement two-way commu-
nication in Gestalt is tricky and you are probably
better off using one of the other methods in that
case.

Details

There are two basic ways to use Gestalt for data
sharing: Gestalt values and Gestalt callbacks.

When you use Gestalt values, your data
provider will install a Gestalt value when it is ini-
tialized, and change the value whenever the data
changes.

Your data consumers will read the gestalt
value as necessary. Data consumers depend
on the provider generating the information in a
timely manner.



Gestalt values are limited to 4 bytes. If you
need to share more information, the simplest
way to do it is to allocate a block of memory
in your data provider, and put a pointer to that
block in the Gestalt value. The data consumer
can dereference the pointer and access the data.

If you are sharing a block of data by putting
a pointer in a Gestalt value, remember to remove
the selector value when your data provider quits
or is otherwise unloaded, so that the data con-
sumer does not dereference a stale pointer.

If your data provider needs to leave the data
around even after it quits or is otherwise un-
loaded, you will need to allocate the block in the
System heap. You should avoid doing this, as the
System heap is never eligible for virtual memory
disk paging and therefore its size has visible im-
pact on system performance.

You might prefer to generate your data when
the data consumer requests it, rather than gen-
erating it in advance. If your data changes fre-
guently, but data consumers only ask for it in-
frequently (for example, CPU load), it might be
more efficient to only recalculate when the data
is requested. If your data provider can’t reliably
get processing time and therefore can’t update
the data frequently enough, your data might be
more current if it’s generated on demand rather
than updated periodically.

If so, you need to use a Gestalt callback.
However, Gestalt callbacks are trickier than
Gestalt values, because the code has to be loaded
in the System heap.

When you really need a Gestalt callback,
compile your code as a code resource (preferably

making it fat if you support 68K and PPC com-
puters), load the code resource into the system
heap and lock it there, and install it as a Gestalt
callback.

Summary

Mac OS interrupt time no
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib yes
Mac OS X CFM no
Mac OS X Mach-O no
Mac OS X Classic no

PPC Toolbox

Overview

The Process-to-Process Communication Toolbox
allows applications and standalone code to send
and receive arbitrary messages, locally or via Ap-
pleTalk. Sending and receiving can be done at
either interrupt time or system task time.

The main disadvantage of the PPC Toolbox is
that it is not available under Carbon, and there-
fore any code using the PPC Toolbox has to be
rewritten for Mac OS X. However, the PPC Tool-
box has a number of powerful features which
make it a good choice for code which will not
be ported to Mac OS X, or code which will use
a different data sharing mechanism on Mac OS
X.

The main benefits of the PPC Toolbox are that

Data Sharing on Mac OS, page 6



it is available at interrupt time and does not re-
quire access to an event loop. Itis therefore an ex-
cellent choice for communication between an ap-
plication and standalone or interrupt-time code.

The programming interface of the PPC Tool-
box is significantly more complex than Gestalt. If
you need simple one-way communication at sys-
tem task time, Gestalt will serve you better than
the PPC Toolbox.

The PPC Toolbox is a good choice for two-
way communication in standalone code and in-
terrupt time code. However, it is not the best
choice for communication between applications,
since other techniques are available to them
which work as well, but support a wider range
of operating systems.

Details

Your data provider will become a PPC Toolbox
server. The server will be called at interrupt time
to handle incoming requests from clients, which
will be your data consumers.

Your server will handle the request at inter-
rupt time, and this makes it hard to do many use-
ful things in the PPC Toolbox server code. This is
usually the biggest burden in writing PPC Tool-
box code.

If you can generate your data at interrupt
time, then your problem is easily solved — you
can directly return your data. However, this
mostly applies only to simple data, and if your
data is so simple maybe you should just be using
Gestalt.

Data Sharing on Mac OS, page 7

Summary

Mac OS interrupt time yes
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib no
Mac OS X CFM no
Mac OS X Mach-O no
Mac OS X Classic no

CFM shared data

Overview

Code Fragment Manager handles loading shared
libraries and applications on PowerPC. Al-
though ilt has been retrofitted to 68K, it is some-
times cumbersome.

Every CFM shared library carries its global
data, and can choose whether the data will be
shared per process or globally. Per process shar-
ing means that if several applications load the li-
brary, the library will get a separate copy of its
data in each application. This is the default set-
ting, and the one that is most natural to use —
there is no interaction between different applica-
tions as far as the library is concerned.

Global sharing means that there is no one
copy of the data shared among all applications.
The library, loaded in one application, can mod-
ify the shared data, and the changes will be
seen by other applications in which the library
is loaded.



CFM shared data is not supported under Mac
OS X. This technique for sharing data can only be
used on Mac OS 8 and 9. It is available to stan-
dalone code and code running at interrupt time,
and it tends to be simpler to use than the PPC
Toolbox.

Details

In this model, your code might not be as clearly
divided into data producers and data consumers,
since all of your code will access the shared data
in exactly the same way. Nonetheless, when
thinking about your code, it might be helpful to
think about some of your code as producing data
and mostly writing to the shared memory, and
other as consuming the data and mostly reading
from the shared memory.

You can divide all the data you will be shar-
ing into fixed-size data (such as integers and
fixed-size strings), and variable-size data (such
as arrays).

Any fixed-size data can be declared as global
variables in a shared library. Any variable-size
data will have to be declared as pointers, and
you will have to allocate the actual memory for
the data on the fly. You will have to allocate
the memory for variable-size data in the Sys-
tem heap; otherwise, it will be destroyed when
the application in which it was allocated quits,
causing all other applications to dereference stale
pointers and crash when they try to use the data.

In general, you should not put any code in a
shared library with globally shared data. More
precisely, you can put code in a shared library
with globally shared data if that code does not

link against another library whose data is not
globally shared. This means you can’t call into
InterfaceLib from your shared library with glob-
ally shared data, so there’s really not much you
can do. To avoid writing some safe code now
and then forgetting about the restriction later, |
recommend just not putting any code into your
global shared library. Since you should have de-
signed an API to access your shared data before
you got this far, the safest approach is to put
all the code which implements your API into a
shared library with per-process data, and all the
data into a globally shared library, and link the
former against the latter.

You can treat your shared data just as any
other variable, except that when you change it
in one application, you can see that change from
other applications.

Summary

Mac OS interrupt time yes
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib yes
Mac OS X CFM no
Mac OS X Mach-O no
Mac OS X Classic no

AppleEvents
Overview

The Apple Event Manager allows applications
to exchange arbitrary application-defined mes-

Data Sharing on Mac OS, page 8



sages. The structure of AppleEvents is defined
by the application.

Receiving AppleEvents requires an event
loop. Sending AppleEvents doesn’t, but it re-
quires that the application be AppleEvent-aware.
Because of that, AppleEvents are in general un-
suitable for data sharing in standalone code or in
libraries which can’t guarantee they will only be
loaded in AppleEvent-aware applications.

The Apple Event Manager is not interrupt
safe, so Apple Events can’t be used from inter-
rupt task time.

The Apple Event Manager is available in Car-
bon. AppleEvents can leave and enter the Classic
compatibility environment on Mac OS X.

Details

In order to use AppleEvents for data sharing,
you will almost certainly need a faceless back-
ground application. A faceless background ap-
plication is an application which is invisible to
the user, and does not show up in the Ap-
plication menu, but can send and receive Ap-
pleEvents.

Your faceless background application will be
the caretaker of your shared data. Your data pro-
ducers will send the data to the faceless back-
ground application, and your data consumers
will retrieve the data from it.

Normally, your code will be simpler if you
make the faceless background application be the
data producer, but that is not necessary.

Data Sharing on Mac OS, page 9

The biggest problem with AppleEvents is
performance. Parsing and unparsing Ap-
pleEvents structures is more expensive than
most other data sharing methods, and therefore
you will run into performance problems if you
try to send a large amount of data or perform a
large number of transactions using AppleEvents.
However, they are one of the few methods which
allows your data to escape from the Classic envi-
ronment on Mac OS X, so you should seriously
consider AppleEvents if you need to exchange
your data between classic and native applica-
tions of Mac OS X.

You can improve performance of your Ap-
pleEvent parsing code by not using AppleEvent
Manager structures for your private data. For
example, if you need to transfer 2 integers, you
don’t need to make an AppleEvent record with
two fields, you can simply put the two integers
in a struct and stuff the handle into an AEDesc.
This is not such a good idea if you are using
AppleEvents to make your code scriptable, but
if you are only using them for data sharing,
you can treat all AppleEvents as private and not
bother with such niceties as coercion handlers.
Simply treatan AppleEvent as a way to geta blob
of data to another application.

Summary

Mac OS interrupt time no
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib yes
Mac OS X CFM yes
Mac OS X Mach-O yes
Mac OS X Classic yes



Mac OS 9 File Mapping

Overview

Mac OS 9.1 introduces a new API for directly
mapping disk files to memory addresses. This
allows you to treat a file as a block of memory
and read to it and write from it in the same way
you would read and write memory. The changes
you make to the memory range to which the file
is mapped are reflected on disk.

Unfortunately, Mac OS 9.1 has a bug in the
file mapping implementation which prevents an
application from using more than one memory-
mapped file on the same volume.

As of this writing, there are no Carbon file
mapping APIs.

The main advantage of file mapping over
other data sharing APIs is that the data is persis-
tent — the data is written to the disk, and will be
available to your application even after quitting
and relaunching.

However, system requirements are steep, the
Mac OS 9.1 implementation is limited, and the
API can only be used to map a fixed file range to
a memory range, so if your data needs to grow
and shrink over time, you have to implement
your own memory manager on top of the file
mapping API.

This makes Mac OS 9 file mapping APIs suit-
able for only a very small number of problems.

Details

All of your data producers and consumers need
to agree on which file to map to use for data shar-
ing. Then, they all map the file into their respec-
tive address spaces, and use the shared memory
however they want.

Since you get a fixed-size block of shared
memory, if memory needs for your shared data
grow, you will need to map additional file
ranges. Your additional file ranges may come
from the same file or a different file, and it is up
to you to communicate among your components
which additional ranges need to be mapped.

Before you can start using a mapped file, all
of your code has to agree on which file to map,
and in order to do that you will have to use some
other method to communicate — probably one of
the other data sharing methods available to you.

Since file mappings are quite limited in what
systems they work on and how they can be used,
and you have to use a different method to com-
municate the initial information, you are almost
certainly better off just using a different method
of data sharing. This is not to say that file map-
pings are useless, just that for data sharing you
are better off using something else in most cases.

Data Sharing on Mac OS, page 10



Summary

Mac OS interrupt time no
Mac OS standalone code yes

Mac OS 68K no
Mac OS InterfaceLib yes
Mac OS CarbonLib no
Mac OS X CFM no
Mac OS X Mach-O no
Mac OS X Classic no

Mach IPC

Overview

The Mach kernel is the foundation of Mac OS
X. It has powerful inter-process communication
APIs. The most fundamental API is the Mach
IPC layer; other inter-process communication
APIs in Mac OS X use Mach IPC.

Writing directly to the Mach IPC layer is
in general discouraged by Apple. Hlgher-level
APIs, such as the Foundation Kit (in Cocoa) and
Apple Event Manager (in Carbon) should be
used instead.

However, there are situations where you may
want to use Mach IPC directly. For example, if
you are unable to use Java or Objective C, you
cannot take advantage of Foundation Kit. If you
do not want to rely on Carbon, you cannot use
the Apple Event Manager. In such cases, you
might want to resort to writing directly to the
Mach IPC layer.

Mach IPC is only available on Mac OS X.

Data Sharing on Mac OS, page 11

Details

If you are using Mach IPC you will typically
want to have a faceless background application
which stores all the shared data, and make other
components talk to that application to retrieve or
store the data.

In Mach parlance, the faceless background
application will be an IPC server, and the remain-
ing applications will be IPC clients.

Mach IPC works by having the client assem-
ble a message it wants to send to the server,
and then calling the Mach IPC interfaces. The
Mach IPC interface suspends the client, sends
the message to the server, and wakes the server.
The server receives the message, and crafts a re-
sponse, which is returned to the client. The client
wakes and resume processing and the server is
suspended again.

The functions which create structures passed
into Mach IPC (in the client) and retrieve data
from those structures (in the server) follow a
standard form. All the parameters which need
to be sent across are stored as fields of a struc-
ture; the pointer to that structure is passed to
Mach IPC. The pointer comes out on the server
end, where the fields are read out to create the
response.

Because of this, Mac OS X provides the “mig”
utility to automatically generate that code for
you. The input to mig is a text file in C-like syn-
tax which describes messages you want to send
to the server. The output consists of client func-
tions, which assemble messages from their argu-
ments, and server functions, which disassemble



the messages and assemble the replies.

In order to establish a Mach IPC connection,
you need to create a Mach IPC port which con-
nects a client to a server. This is done by using
the bootstrap server. The bootstrap server is a
process which maintains an association between
service names (which are descriptive strings) and
servers. Your IPC server registers with the boot-
strap server, with a name of your choosing. Your
IPC clients contact the bootstrap server to estab-
lish a connection with your server.

The bootstrap server is an IPC server as well;
the only thing special about it is that every ap-
plication automatically has a connection to the
bootstrap server, which allows it to establish con-
nections to arbitrary other IPC servers.

Summary

Mac OS interrupt time no
Mac OS standalone code no

Mac OS 68K no
Mac OS InterfaceLib no
Mac OS CarbonLib no
Mac OS X CFM no
Mac OS X Mach-O yes
Mac OS X Classic no

Multiprocessing Queues
Overview

Mac OS 8, 9, and X support the Multiprocess-
ing APl which provides preemptively scheduled
threads on PowerPC. This API includes facilities

for sharing data between threads.

MP threads run in the address space of the
application which created them, and therefore on
Mac OS X only threads within one application
can directly exchange data (even if you use kM-
PAllocateGloballyMask). However, on Mac OS 8
and 9, including the Classic environment on Mac
OS X, MP threads from different applications can
exchange data directly, and therefore can be used
as a form of data sharing.

Details

The system requirements for the Multiprocess-
ing API are listed in the APl documentation.
In short: Mac OS 8.6, PowerPC only, excluding
PowerMac 6100, 7100, 8100, 5200, and 6200.

Prior to Mac OS 9.1, the list of Mac OS func-
tions you can call from an MP thread was very
short. Therefore, if you want to use MP threads
for data sharing before Mac OS 9.1, you will need
to delegate all the real work to an ordinary appli-
cation or interrupt time task, and only use MP
threads as a storage vehicle.

When using MP threads for data sharing,
start by creating a thread and its request queue.
The request queue is used to relay data requests
to the thread; the requests might be either read
requests, made by data consumers, or write re-
guests, made by data producers.

Each data consumer and data producer will
also have a response queue, which is where the
thread will deposit the data when it’s ready.

When a data consumer needs some data from

Data Sharing on Mac OS, page 12



the thread, it puts a request on the request queue;
the request includes a pointer to the response
qgueue. Then it waits for the thread to put the
response on the response queue.

After the thread is started, it handles re-
guests simply by waiting for one to appear in
the request queue, extracting it, producing the
response, and putting the response on the appro-
priate response queue.

The tricky part of this system is that under
Mac OS 8 or 9, the main Mac OS task is waiting
for the thread to return the data, and therefore
the thread cannot attempt to do anything that
might require cooperation from the main Mac OS
task. For example, if your thread needs to allo-
cate memory to complete a request, it must use
kMPAllocateNoGrowthMask to avoid a deadlock.

Summary

Mac OS interrupt time yes
Mac OS standalone code yes

Mac OS 68K no
Mac OS InterfaceLib yes
Mac OS CarbonLib yes
Mac OS X CFM yes
Mac OS X Mach-O yes
Mac OS X Classic no

Unix Pipes

Overview

A pipe is a first-in first-out communication chan-
nel. Two Unix processes can communicate by

Data Sharing on Mac OS, page 13

creating two pipes, one for each direction of com-
munication.

A pipe can be associated with a file system
entry (a named pipe), which allows processes to
easily find the pipe.

Pipes work well for bidirectional communi-
cation among Mac OS X native processes. They
do not exist on Mac OS 9, and are not available
to processes running inside the Classic environ-
ment.

Details

Typically you will want to use named pipes, be-
cause they allow other processes to attach to the
pipe after the pipe has been created. Unnamed
pipes are only useful if your application creates
the pipes and then uses fork() to start another
application. Then the two applications can com-
municate using the pipes, but no other applica-
tions can join in.

To create a named pipe, you use the mkfifo ()
function. Given a file system path (usually to a
temporary file), mkfifo will associate a pipe with
that path. Then any process can open the pipe for
reading or writing, using the standard C library
(open()).

Usually you will only want one program
reading from a pipe; if you need bidirectional
communication, you should use two pipes, one
in each direction. If you need to have multiple
programs writing to a pipe, you have to imple-
ment some kind of synchronization mechanism,
otherwise they will stomp over each other and
the data on the pipe will be garbled. The simplest



way to do that is to use a “lock file”, which is a
temporary file which is created by a process be-
fore it writes to the pipe and destroyed after it’s
done writing. Since file creation is atomic, this
guarantees that access to the pipe will be exclu-
sive. Processes which need to write to the pipe
need to wait until the lock file is released, using a
select () call. When using bidirectional commu-
nication, the lock file can’t be deleted until the re-
guest has been sent on one pipe and the response
read from the other.

Summary

Mac OS interrupt time no
Mac OS standalone code no

Mac OS 68K no
Mac OS InterfaceLib no
Mac OS CarbonLib no
Mac OS X CFM no
Mac OS X Mach-O yes
Mac OS X Classic no

Loopback Network Interface
Overview

Every computer capable for TCP/IP network-
ing has a special ”loopback” network interface.
The data sent over this interface never leaves the
computer. Programs can communicate over the
loopback interface just like they would commu-
nicate over any other TCP/IP connection; the re-
served IP address 127.0.0.1 always corresponds
to the loopback interface.

This method of data sharing is available on

Mac OS 8 and 9 as well as Mac OS X. Pro-
cesses inside the Classic environment can’t com-
municate with native Mac OS X processes using
this method. However, the performance of this
method on Mac OS 8 and 9 can be unsatisfactory,
because of Mac OS’s cooperative scheduling.

Details

To use the loopback interface you will need a
background application which listens for net-
work connections and responds to them. This
application will usually be your data producer as
well, and data consumers will connect to it over
the loopback interface.

Your server will need to listen on a specific
port. Since you will in general not have access to
ports below 1024, because they require adminis-
trator access on Mac OS X, you will need to use a
port above 1023. However, any application can
listen on any of those ports, sp you will prob-
ably want to chose your port on the fly, rather
than assuming a particular port will always be
free for you to use. You will need to communi-
cate the port number via some other means (e.g.
AppleEvents) in order to be able to establish the
communication.

You will also need to design a protocol which
your clients (data consumers) will communicate
with your server (data producer). The simplest
protocol would include at the beginning of each
message the protocol version number, the mes-
sage type, and the message length, followed by a
variable size message.

This allows you to preserve compatibility
with older clients, and to skip over messages

Data Sharing on Mac OS, page 14



which your server does not understand (thereby
allowing the client to try using a different pro-
tocol version if the first one it tries is not under-
stood by the server).

You have to remember to connect to the IP
address 127.0.0.1, rather than trying to connect
to the real IP address of the computer you are
running on, because there might be times when
the computer does not have an IP address.

The loopback interfaces of Classic and Mac
OS X are not connected to each other, so a server
listening on the loopback interface in Classic will
not see any traffic sent to the loopback interface
from outside of Classic, and vice-versa.

Once you’ve determined how you will nego-
tiate the port and what protocol you will use to
communicate between data consumers and pro-
ducers, the rest is a simple matter of Open Trans-
port or BSD sockets programming.

Summary

Mac OS interrupt time yes
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib yes
Mac OS X CFM yes
Mac OS X Mach-O yes
Mac OS X Classic no

Data Sharing on Mac OS, page 15

Component Manager

Overview

Component manager is the plugin/shared li-
brary architecture of the Classic Mac OS which
predates CFM. It’'s mainly used for QuickTime
plugins, but it’s still alive in several other areas
as well. It is not supported on Carbon, and there-
fore using the Component Manager restricts you
to Mac OS 9 or older.

Components can be used from any environ-
ment of Classic Mac OS.

Details

Component manager works similarly to CFM
shared data. Your data provider needs to be im-
plemented as a component, and the component
has to be loaded on the system. This can be done
from an extension, in order to make a component
available to every application.

Allocations done in your component which
need to persist among all applications must be
done in the System heap, and therefore you
should strive to minimize them.

Your data consumers and data providers will
call the Component Manager to establish a con-
nection with your component, and then use calls
specific to your component to get the functional-
ity you need.



Summary

Mac OS interrupt time yes
Mac OS standalone code yes

Mac OS 68K yes
Mac OS InterfaceLib yes
Mac OS CarbonLib no
Mac OS X CFM no
Mac OS X Mach-O no
Mac OS X Classic no

Revision History

e August 23, 2001: Reworded AppleEvents section to be more appropriate for Carbon (Eric Grant);
removed stale todos from section on FBAs (John Selhorst)

e June 2001: First revision, for MacHack 2001

References

General Documentation

[1] Background-Only Applications
<http://developer.apple.com/technotes/tn/tn1070.html>

[2] Background-Only Applications in System 7

<ftp://ftp.apple.com/developer/Periodicals/develop/develop09/develop_Issue__9/
Background-Only_Apps_in.sit.hgx>

[3] Interrupt-Safe Routines
<http://developer.apple.com/technotes/tn/tn1104.html>

[4] Carbon documentation
<http://developer.apple.com/techpubs/macosx/Carbon/carbon.html>

[5] CocoalLib
<http://www.eagrant.com/Cocoalib.hqgx>

Data Sharing on Mac OS, page 16



[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Specific APIs

Gestalt Manager documentation
<http:
//developer.apple.com/techpubs/macos8/0SSvcs/GestaltManager/gestaltmanager.html>

Gestalt Manager sample code
<http://developer.apple.com/samplecode/Sample_Code/0S_Utilities.htm>

PPC Toolbox documentation
<http:
//developer.apple.com/techpubs/macos8/InterproCom/PPCToolbox/ppctoolbox.html>

PPC Toolbox sample code
<http://developer.apple.com/samplecode/Sample_Code/Interapplication_Comm.htm>

Code Fragment Manager documentation
<http://developer.apple.com/techpubs/macos8/RuntimeSvcs/CodeFragmentManager/
codefragmentmanager .html>

Code Fragment Manager sample code
<http://developer.apple.com/samplecode/Sample_Code/Runtime_Architecture.htm>

Apple Event Manager documentation
<http://developer.apple.com/techpubs/macos8/InterproCom/AppelEventManager/
appleeventmanager.html>

Apple Event Manager sample code
<http://developer.apple.com/samplecode/Sample_Code/Interapplication_Comm.htm>

File Mapping documentation
<http://developer.apple.com/technotes/tn/tn2011.html>

Mach Server Writer’s Guide
<http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/publications.html>

Mach Server Writer’s Interface
<http://www.cs.cmu.edu/afs/cs/project/mach/public/www/doc/publications.html>

Multiprocessing Services documentation
<http://developer.apple.com/techpubs/macos8/0SSvcs/MultiPServices/
multiprocessingservices.html>

MP-Safe Routines
<http://developer.apple.com/technotes/tn/tn2006.html>

Data Sharing on Mac OS, page 17



[19] UNIX Network Programming, Volume 1: Networking APIs - Sockets and XTI, W. Richard
Stevens

[20] Open Transport documentation
<http://developer.apple.com/techpubs/macos8/NetworkCommSvcs/OpenTransport/
opentransport.html>

[21] Open Transport sample code
<http://developer.apple.com/samplecode/Sample_Code/Networking.htm>

[22] Component Manager documentation
<http://developer.apple.com/techpubs/macos8/RuntimeSvcs/ComponentManager/
componentmanager.html>

Data Sharing on Mac OS, page 18



