Data Sharing on Mac OS

Miro Juridi¢ <meeroh@mit.edu>

June 21, 2001



Why Data Sharing?

e Full user experience usually requires several components
e Implementation constraints might require helper components

e Components need to share data



Architecture of data sharing

e Data producers generate data
e Data consumers read and use the data

e Usually, data provider stores the data ("server”)



Designing your data sharing

e Understand the data you need to share
e Create an API (even if a simple one)

e Choose an implementation to fit you runtime requirements



Obstacles

e Synchronization, preemption, and data coherency
e Calling Mach-O from CFM — Apple sample code

e Calling 68K from PPC (and vice versa) — Apple Technotes



Synchronization, preemption, and data coherency

Preemptive scheduling vs. cooperative scheduling
Cooperatively scheduled tasks yield to each other when they want to

Preemptively scheduled tasks yield to each other when the system wants
them to

Preemptive tasks can introduce data coherency problems (cooperative
tasks can too, but it's easier to fix)



Data (in)coherency

1: Read x from memory
2: Add 1 to x
3: Write x to memory

Two tasks, A and B, run the code at the same time, preemptively
scheduled. The initial value of x is 0.

A-1, A-2, (A is preempted), B-1, B-2, B-3, (B is preempted), A-3

Outcome: final value of x is 1!



Data coherency

To achieve data coherency, you must avoid preemption
Without preemption, many things don’t work

Therefore, avoid preemption as much as needed to avoid problems — and
no more

Understand scheduling in the code you are working with



Scheduling on Mac 0OS 9

Applications cooperative to each other

lterrupt-time code preempts applications

Deferred tasks do not preempt other deferred tasks

Secondary interrupts do not preempt other secondary interrupts
Other interrupt-time code preempts other interrupt-time code

Multiprocessing threads preempt other MP threads, apps, and interrupt-
time code



Scheduling on Mac 0OS X

e Applications preemt each other
e Threads (POSIX, Mach, MP) preempt each other

e Some Carbon callback preempt the main task and can preempt the main
task



Driver Services
Open Transport

Multiprocessing

POSIX semaphores

Synchronization APls

10



Sharing Mechanisms — Runtime Environments

Interrupt time
Standalone code
680x0 code
Interfacelib
CarbonLib

Mac OS X CFM
Mac OS X Mach-O
Mac OS X Classic

11



Gestalt

Gestalt values vs. Gestalt callbacks
Gestalt values: very simple, but also limited
Gestalt callbacks: useful when data needs to be generated on demand

Not very useful on Mac OS X

12



PPC Toolbox

e Harder to use than Gestalt (data provider runs at interrupt time)

e More powerful: can be used from interrupt time and standalone code

e Mac OS 8 and 9 only

13



CFM Shared Data

All data consumers and producers link against a shared library
Shared library has one copy of data shared among all apps
Don't put code in the library with shared data

Doesn’t work on Mac OS X

14



Apple Events

Extremely versatile

Work on Mac OS 9 and X, can cross to Classic
Can't use at interrupt time

Hard to use in standalone code

Performance can be problematic

15



Mac OS 9 File Mapping

e Map files to memory and access them directly
e Data persistent after data producers quit

e Only on 9.1, limited implementation

16



Mach IPC

At the root of all inter-process communication on Mac OS X
Very low-level
Use higher-level APIs when possible

Only on Mac OS X

17



Multiprocessing Queues

e Use them to communicate between different MP threads
e Only useful for inter-process communication on Mac OS 9

e Tricky to avoid deadlocks

18



Unix Pipes

e FIFO channel between two processes
e Use standard POSIX APIs to read and write

e Mac OS X only

19



Loopback Networking

TCP/IP interface
Data does not reach the network
Use BSD, Carbon, or Cocoa networing APls

Can't cross Classic boundary

20



Component Manager

e Shared library architecture before CFM
e Not in Carbon, not on Mac OS X

e Similar to CFM shared data

21



