
Data Sharing on Mac OS

Miro Jurǐsić <meeroh@mit.edu>

June 21, 2001



Why Data Sharing?

• Full user experience usually requires several components

• Implementation constraints might require helper components

• Components need to share data

1



Architecture of data sharing

• Data producers generate data

• Data consumers read and use the data

• Usually, data provider stores the data (”server”)

2



Designing your data sharing

• Understand the data you need to share

• Create an API (even if a simple one)

• Choose an implementation to fit you runtime requirements

3



Obstacles

• Synchronization, preemption, and data coherency

• Calling Mach-O from CFM – Apple sample code

• Calling 68K from PPC (and vice versa) – Apple Technotes

4



Synchronization, preemption, and data coherency

• Preemptive scheduling vs. cooperative scheduling

• Cooperatively scheduled tasks yield to each other when they want to

• Preemptively scheduled tasks yield to each other when the system wants
them to

• Preemptive tasks can introduce data coherency problems (cooperative
tasks can too, but it’s easier to fix)

5



Data (in)coherency

1: Read x from memory

2: Add 1 to x

3: Write x to memory

Two tasks, A and B, run the code at the same time, preemptively
scheduled. The initial value of x is 0.

A-1, A-2, 〈A is preempted〉, B-1, B-2, B-3, 〈B is preempted〉, A-3

Outcome: final value of x is 1!

6



Data coherency

• To achieve data coherency, you must avoid preemption

• Without preemption, many things don’t work

• Therefore, avoid preemption as much as needed to avoid problems – and
no more

• Understand scheduling in the code you are working with

7



Scheduling on Mac OS 9

• Applications cooperative to each other

• Iterrupt-time code preempts applications

• Deferred tasks do not preempt other deferred tasks

• Secondary interrupts do not preempt other secondary interrupts

• Other interrupt-time code preempts other interrupt-time code

• Multiprocessing threads preempt other MP threads, apps, and interrupt-
time code

8



Scheduling on Mac OS X

• Applications preemt each other

• Threads (POSIX, Mach, MP) preempt each other

• Some Carbon callback preempt the main task and can preempt the main
task

9



Synchronization APIs

• Driver Services

• Open Transport

• Multiprocessing

• POSIX semaphores

10



Sharing Mechanisms – Runtime Environments

• Interrupt time

• Standalone code

• 680x0 code

• InterfaceLib

• CarbonLib

• Mac OS X CFM

• Mac OS X Mach-O

• Mac OS X Classic

11



Gestalt

• Gestalt values vs. Gestalt callbacks

• Gestalt values: very simple, but also limited

• Gestalt callbacks: useful when data needs to be generated on demand

• Not very useful on Mac OS X

12



PPC Toolbox

• Harder to use than Gestalt (data provider runs at interrupt time)

• More powerful: can be used from interrupt time and standalone code

• Mac OS 8 and 9 only

13



CFM Shared Data

• All data consumers and producers link against a shared library

• Shared library has one copy of data shared among all apps

• Don’t put code in the library with shared data

• Doesn’t work on Mac OS X

14



Apple Events

• Extremely versatile

• Work on Mac OS 9 and X, can cross to Classic

• Can’t use at interrupt time

• Hard to use in standalone code

• Performance can be problematic

15



Mac OS 9 File Mapping

• Map files to memory and access them directly

• Data persistent after data producers quit

• Only on 9.1, limited implementation

16



Mach IPC

• At the root of all inter-process communication on Mac OS X

• Very low-level

• Use higher-level APIs when possible

• Only on Mac OS X

17



Multiprocessing Queues

• Use them to communicate between different MP threads

• Only useful for inter-process communication on Mac OS 9

• Tricky to avoid deadlocks

18



Unix Pipes

• FIFO channel between two processes

• Use standard POSIX APIs to read and write

• Mac OS X only

19



Loopback Networking

• TCP/IP interface

• Data does not reach the network

• Use BSD, Carbon, or Cocoa networing APIs

• Can’t cross Classic boundary

20



Component Manager

• Shared library architecture before CFM

• Not in Carbon, not on Mac OS X

• Similar to CFM shared data

21


