C++4: Constructors and assighment

Miro Jurisié
meeroh@meeroh.org

Constructors

Create a new object

Default constructor

Class Q);

Class c;
Class* ¢ = new Class ();

Copy constructor

Class (const Class& inOriginal);

Class c1 (c2);
Class cl*x = new Class (c2)

Other constructors, other copy constructors

Assignment operator

e Assign one object to another

Class& operator= (const Class& inOriginal)

cl = c2;
Class cl1 = c2;

e Other assignment operators

Compiler-generated constructors

e Default constructor

Class::Class ():
Base (),
mMember ()

{

}

e Copy constructor

Class::Class (
const Class& inOriginal):
Base (inOriginal),
mMember (inOriginal.mMember)

Compiler-generated assignment

e Assignment operator

Class&

Class::operator = (
const Class& inOriginal)

{
Base::operator = (inOriginal);
mMember = inOriginal.mMember;
return *this;

Why write your own constructors and assignment operators

e Resource ownership

e Copy-on-write

Constructors

Compiler must construct all bases and members before entering constructor

class Class {
private:
string mString;

public:
Class (
string inString)
// mString (O
{
mString = inString;
}

Constructors

e Constructor-initializer is never more expensive than assignment — don’t pay the multiple construction
cost

class Class {
private:
string mString;

public:
Class (
string inString):
mString (inString)
{
}

};

e Worry about exception safety

Order of construction

e Compiler must reorder initialization order to match declaration order

class Class {
public:
Class (int inValue);

private:
int mFirst;
int mSecond;

};

Class::Class (
int inValue):
mSecond (inValue),
mFirst (mSecond + 1) // bug

e Likewise for base classes
e gcc 2.9x and 3.x warn, MW C++ compiler in CWP8 and older doesn’t

Implicit constructors

e |tems not explicitly constructed are always constructed implicitly — this may not be what you want:

class Base {
private:
int mValue;

public:

Base ():
mValue (0)

{

}

Base (
int inValue):
mValue (inValue)

{

}

class Derived:
public Base {

private:
mName ;
public:
Derived ()
// Base ()
// mName ()
{
}

Derived (
string inName) :
// Base ()

mName (inName)

Derived (

const Derived& inOriginal):

// Base () -- bug?
mName (inOriginal.mName)

10

Assignment operator return value

a=b=c
a.operator = (b.operator = (c))

e Return *this from assignment operator to allow assignment chains

class Class

{
private:
string mName;
public:
Class&
operator = (
const Class& inOriginal)
{
mName = inOriginal.mName;
return *this;
}
s

11

Assignment to self

a= a;

Class a;

// lots of code
Class* b = &a;
// lots of code
*b = a;

e Check for assignment to self in assignment operator

class Class
{
private:
int* mValue;

public:
Class (
int inValue):
mValue (new int (inValue))
{
}

12

~“Class ()

{
delete (mValue);
}
Class (
const Class& inOriginal):
mValue (new int (inOriginal.mValue))
{
}
Class&

operator = (
const Class& inOriginal)

{
delete mValue;
mValue = new int (inOriginal.mValue); // bug
return *this;

}

13

Class&
operator = (
const Class& inOriginal)

{
if (&inOriginal != this) {
delete mValue;
mValue = new int (inOriginal.mValue);
}
return *this;
}

};

Be aware of object identity and object equality

14

class Base {
private:
int mValue;

public:

Base ():
mValue (0)

{

}

Base (
int inValue):
mValue (inValue)

{

}

Base assignment

e Copy everything, including bases, in assignment operator

15

class Derived:
public Base {
private:
mName ;

public:
Derived&
operator = (
const Derived& inOriginal)

{
if (&inOriginal != this) {
Base: :operator = (inOriginal);
mName = inOriginal.mName;
}
return *this;
}

Preventing copying

e Do not omit copy constructor and assignment operator for non-copyable classes

e Prevent copying with unimplemented private copy constructor and assignment operator

class NonCopyable {
private:
NonCopyable (const NonCopyable&); // Omit implementation
NonCopyable& operator= (const NonCopyable&); // Omit implementation

17

